396 research outputs found

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    A Pipelined Tracer-Aware Approach for Lesion Segmentation in Breast DCE-MRI

    Get PDF
    The recent spread of Deep Learning (DL) in medical imaging is pushing researchers to explore its suitability for lesion segmentation in Dynamic Contrast-Enhanced Magnetic-Resonance Imaging (DCE-MRI), a complementary imaging procedure increasingly used in breast-cancer analysis. Despite some promising proposed solutions, we argue that a “naive” use of DL may have limited effectiveness as the presence of a contrast agent results in the acquisition of multimodal 4D images requiring thorough processing before training a DL model. We thus propose a pipelined approach where each stage is intended to deal with or to leverage a peculiar characteristic of breast DCE-MRI data: the use of a breast-masking pre-processing to remove non-breast tissues; the use of Three-Time-Points (3TP) slices to effectively highlight contrast agent time course; the application of a motion-correction technique to deal with patient involuntary movements; the leverage of a modified U-Net architecture tailored on the problem; and the introduction of a new “Eras/Epochs” training strategy to handle the unbalanced dataset while performing a strong data augmentation. We compared our pipelined solution against some literature works. The results show that our approach outperforms the competitors by a large margin (+9.13% over our previous solution) while also showing a higher generalization ability

    A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification

    Get PDF
    Glioblastoma Multiforme (GBM) is considered one of the most aggressive malignant tumors, characterized by a tremendously low survival rate. Despite alkylating chemotherapy being typically adopted to fight this tumor, it is known that O(6)-methylguanine-DNA methyltransferase (MGMT) enzyme repair abilities can antagonize the cytotoxic effects of alkylating agents, strongly limiting tumor cell destruction. However, it has been observed that MGMT promoter regions may be subject to methylation, a biological process preventing MGMT enzymes from removing the alkyl agents. As a consequence, the presence of the methylation process in GBM patients can be considered a predictive biomarker of response to therapy and a prognosis factor. Unfortunately, identifying signs of methylation is a non-trivial matter, often requiring expensive, time-consuming, and invasive procedures. In this work, we propose to face MGMT promoter methylation identification analyzing Magnetic Resonance Imaging (MRI) data using a Deep Learning (DL) based approach. In particular, we propose a Convolutional Neural Network (CNN) operating on suspicious regions on the FLAIR series, pre-selected through an unsupervised Knowledge-Based filter leveraging both FLAIR and T1-weighted series. The experiments, run on two different publicly available datasets, show that the proposed approach can obtain results comparable to (and in some cases better than) the considered competitor approach while consisting of less than 0.29% of its parameters. Finally, we perform an eXplainable AI (XAI) analysis to take a little step further toward the clinical usability of a DL-based approach for MGMT promoter detection in brain MRI

    Decision Tree-Based Multiple Classifier Systems: An FPGA Perspective

    Get PDF
    Combining a hardware approach with a multiple classifier method can deeply improve system performance, since the multiple classifier system can successfully enhance the classification accuracy with respect to a single classifier, and a hardware implementation would lead to systems able to classify samples with high throughput and with a short latency. To the best of our knowledge, no paper in the literature takes into account the multiple classifier scheme as additional design parameter, mainly because of lack of efficient hardware combiner architecture. In order to fill this gap, in this paper we will first propose a novel approach for an efficient hardware implementation of the majority voting combining rule. Then, we will illustrate a design methodology to suitably embed in a digital device a multiple classifier system having Decision Trees as base classifiers and a majority voting rule as combiner. Bagging, Boosting and Random Forests will be taken into account. We will prove the effectiveness of the proposed approach on two real case studies related to Big Data issues

    Walking with a Posterior Cruciate Ligament Injury: A Musculoskeletal Model Study

    Get PDF
    The understanding of the changes induced in the knee’s kinematics by a Posterior Cruciate Ligament (PCL) injury is still rather incomplete. This computational study aimed to analyze how the internal loads are redistributed among the remaining ligaments when the PCL is lesioned at different degrees and to understand if there is a possibility to compensate for a PCL lesion by changing the hamstring’s contraction in the second half of the swing phase. A musculoskeletal model of the knee joint was used for simulating a progressive PCL injury by gradually reducing the ligament stiffness. Then, in the model with a PCL residual stiffness at 15%, further dynamic simulations of walking were performed by progressively reducing the hamstring’s force. In each condition, the ligaments tension, contact force and knee kinematics were analyzed. In the simulated PCL-injured knee, the Medial Collateral Ligament (MCL) became the main passive stabilizer of the tibial posterior translation, with synergistic recruitment of the Lateral Collateral Ligament. This resulted in an enhancement of the tibial–femoral contact force with respect to the intact knee. The reduction in the hamstring’s force limited the tibial posterior sliding and, consequently, the tension of the ligaments compensating for PCL injury decreased, as did the tibiofemoral contact force. This study does not pretend to represent any specific population, since our musculoskeletal model represents a single subject. However, the implemented model could allow the non-invasive estimation of load redistribution in cases of PCL injury. Understanding the changes in the knee joint biomechanics could help clinicians to restore patients’ joint stability and prevent joint degeneration

    HOLMeS: eHealth in the Big Data and Deep Learning Era

    Get PDF
    Now, data collection and analysis are becoming more and more important in a variety of application domains, as long as novel technologies advance. At the same time, we are experiencing a growing need for human–machine interaction with expert systems, pushing research toward new knowledge representation models and interaction paradigms. In particular, in the last few years, eHealth—which usually indicates all the healthcare practices supported by electronic elaboration and remote communications—calls for the availability of a smart environment and big computational resources able to offer more and more advanced analytics and new human–computer interaction paradigms. The aim of this paper is to introduce the HOLMeS (health online medical suggestions) system: A particular big data platform aiming at supporting several eHealth applications. As its main novelty/functionality, HOLMeS exploits a machine learning algorithm, deployed on a cluster-computing environment, in order to provide medical suggestions via both chat-bot and web-app modules, especially for prevention aims. The chat-bot, opportunely trained by leveraging a deep learning approach, helps to overcome the limitations of a cold interaction between users and software, exhibiting a more human-like behavior. The obtained results demonstrate the effectiveness of the machine learning algorithms, showing an area under ROC (receiver operating characteristic) curve (AUC) of 74.65% when some first-level features are used to assess the occurrence of different chronic diseases within specific prevention pathways. When disease-specific features are added, HOLMeS shows an AUC of 86.78%, achieving a greater effectiveness in supporting clinical decisions
    • …
    corecore